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ue [t] = idem (p-v, y-z, p (1) _ p(2)) 
b) if a"= O,t<6, then 

u,* (t, y, z, a) = P (t, y). V,* Ct. 8. 2, V = Q (ty 4 

The vector lo@, t, Y, z,h), which furnishes a maximum to the right-hand side of Eq.(4.3), 
has the form 

10 = $j- + a (;;ya - [II 5 IP (vz - PY) + .z (- d.2 + P~‘u)l+ . . 

The ES U. and V, determined in this manner furnish the approach game (4.1), (4.2) with 
a saddle point, and the game payoff e'@,t,y,z,h) is given, for any position ~t,~,~}, by the 
equation 

E~=~l2~-(~-v)(f)-t)ili[(II~l~-ll1II~)(ft-~)$ 

1) z u_’ z’(vz - py) (6 - t)* + f (v’ - p’) (6 - tn+ . . . 
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THE APPLICATION OF MONOMIAL LIE GROUPS TO THE PROBLEM OF 
ASYMPTOTICALLY INTEGRATING EQUATIONS OF MECHANICS* 

V.F. ZHURAVLEV 

The basis of the algorithm of the asymptotic integration of equations of 
mechanics discussed below is the representation of the initial system as 
a monomial Lie group of transformations of the phase space into itself. 
Transformations of the system which reduce it to a simpler form are also 
sought in a class of systems possessing group properties. Matching the 
instrument of the analysis to the objective of the analysis enables us 
to limit the operations used in the algorithm to those from the correspond- 
ing operator algebra. 

Hori's paper /l/, in which Lie series were used to construct an 
additional first integral in an autonomous Hamiltonian system, was 
followed by a number of papers which extended this approach to autonomous 
systems of general form (Hori, Kemel et al, a review of whose results can 
be found in /2, 3/J. Note that all these papers are essentially only 
different forms of deriving Hausdorff's formula, which is well-known from 
the theory of Lie groups, complicated somewhat by the concept of parameter 
identification and order separation. Now results can only be obtained 
by refusing to consider systems of general form and by proceeding to 

*Prikl.Matem.I4ekhan.,50,3,346-352,1986 
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analyse the more special types of systems that are characteristic for those 
or other areas of asymptotic theory, with the aim of improving existing 
procedures. One should proceed from Hausdorff's formula, without repeating 
its conclusion. That course is taken here, where we consider systems in 
so-called single-frequency standard form. This form of system is basic 
for the well-known Krylov-Bogolyubov method, which also achieves 
substantial simplification using group-theoretical principles. 

The objective feature of that simplification are: 1) there is no need 
to solve the derivatives transformed at each step of the system, or to 
invert the equation of change; 2) the algorithm does not use power series 
of the small parameter, and all discussion of the procedure can be 
carried out in terms of the required asymptotic forms; 3) the expression 
for the arbitrary approximation can be obtained in the form of an explicit 
recurrence formula which is convenient when using computers that perform 
symbol calculations. Following /4/, the proposed algorithm can be 
generalized to multifrequency systems, essentially non-linear systems 
and resonance cases can be handled. Examplesofthe application of the 
method are considered. 

Consider a system described by differential equations of the following form: 

dz 
- = x (x7 Y, 4, df g=Y(x,y,e) (xER1,yER”,e<l) 

where I is a scalar variable y is an n-dimensional vector and s is a small parameter, the 
right-hand sides are analytic in some domain. 

The presence of a small parameter enables us to use it effectively to form procedures 
for asymptotically constructing approximate solutions. At the same time the most productive 
approach is to construct solutions directly, and to reduce system (1) to a form that is more 
convenient for analysis (and also for solution) /5, 6/. 

The methods of this reduction, which are fairly simple and convenient when constructing 
one or two approximations, become extremely cumbersome when the number of approximations is 
increased. The natural need arises to rationalize the respective procedures. The principle 
of this rationalization can be based on the idea of maximum agreement - with respect to groups 
of features - of the instrument of investigation and the objective of investigation. There 
are examples of this agreement in mechanics: linear systems are naturally transformed using 
linear substitutions; Euler'skinematicequations are non-linear and have singularities, but if 
we note that the rotations of a solid form the group SO@), the equations are obtained as 
linear in group variables, without singularities. The minimum-sized linear system is obtained 
in the notation of equations in quaternions , and if quaternions are also used when solving 
the equations, the operations performed do not exceed the limits of the operations of quaternion 
algebra and reduce to maximally simple and economic algorithms /7/. 

System (1) with arbitrary non-linear right-hand sides nevertheless produces an extremely 
narrow class of mappings ofthephasespaceintoitself -the single-parameter Lie group /S, 9/ 
with the operator 

A = X (5, y, e) ~5Vdx + Y (x, y, e) cVi?g (2) 

Therefore the transformation of system (1) should also be sought not in the class of 
arbitrary non-linear substitutions, as is usually done, but in the form of a single-parameter 
Lie group produced by some differential system which is defined in the same phase space as 
system (1) 

d~ldr = M (x, y, e), dyld~ = N (x1 Y, e) (3) 
where 7 is the parameter of the group, and its operator has the form 

u = h4 (2, y, e) a/ax + N (2, y, e) alay (4) 

In this case the operations performed during the transformations will not exceed the 
limits of the Lie algebra operations of operators of the forms (2) and (41, which also promises 
substantial improvements, for unlike the linear objective (1) the objectives (2) and (4) are 
linear. 

By a transformation of system (1) using the group specified by system (3) with the 

operator (4), we mean the change of variables (x, y) 4 @, d: P = fr (5, Y, z, e), 4 = fr (G yl 'cl e), 
in which the functions fl and fl identically satisfy Eqs.(3), whilst fl(x, y, 0, e)=z, f,(x, y, 

0, e) 3 y. 
These changes of variables, and also the reverse changes, can be written in the form of 

Lie series using the operator (4): 
1 

p=x+TlJx+~7w~x+... = crux 

q=y+rUy++J?y+...=e'~Y 
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5 = p - d’p + . . . = cTUp, y = q - TUq -1 . = eeTcq 

At the same time in the case of a reverse change in the expression for the operator (Eq. 

(4)) instead of the variables x and y we should formally write the variables p and Q: 

u = M (p, q, s) aJ+ + N (P, q, E) 81% 

The problem of the theory of perturbations, i.e. the aims of the transformations performed 

on system (l), can also'be formulated in terms of groups. One of the basic facts of the group 

analysis of differential equations can be the basis of this formulation. If some single- 

parametric group of symmetries of system (1) is known, whose operator commutes with the 

operator of this system A, the latter can be reduced in order. When formulating problems of 

perturbation theory, assumptions that there are known solutions are made in relation to the 

unperturbed part of the system (E = 0). By analogy we shall also assume that the group of 

symmetries is only known for the degenerate (s = 0) system (1). 

The formulation of the problem of perturbation theory takes the following form: group G 

of symmetries of system (1) when E=O is given (G is the group operator), such that we 

have [A, Gl,=~ = 0. It is required to find the group U of transformations of system (l), that 

changes the operator A into the operator B, such that this group G is a group of symmetries 

of system (1) when E = r: [B, Gl,=, = 0. If this can be done, the order of system (1) can be 

reduced. 
The brackets denote the operation of calculating the commutator which represents the 

linear operator calculated using the rule [A, G] ZAG-19-4. 

Note that the traditional formulation of the problem in the method of averaging corresponds 

completely to the above. Indeed, in the method of averaging the degenerate system is autonomous 

and it is required to make the whole system autonomous. But this also means that the 
degenerate system permits a shift group with respect to t and it is required to transform the 

perturbed system such that it permits that group. 

The above problem can be solved when the known group of symmetries is generated by the 

phase flow of the degenerate system: G=Aje+, i.e. when the general solution of the system 

when E = 0 is known. We shall construct an algorithm for the asymptotic solution of the 

problem of perturbations in this case. Without loss of generality we can assume that system 

(1) is written in canonical coordinates of group G and, consequently, has a well-known standard 

form: 

dx/dt = 1 + eX (x, y, e), dyldt = EY (x, y, 8) (6) 
The standard form of the operator A also corresponds to it: 

A = a/ax -t E [X (x9 y, E) a/& f Y (Xv Y 9 E) a/aYl 

If A is the operator of the initial system, (I is the operator of change of variables and 

B is the operator of transformations of the system, it is well-known that these three operators 

are connected by Cauchy's initial problem for Hausdorff's equation 

dBldT = LB, Ul; B,* = A 

The solution of this problem, which gives an explicit connection between these operators, 

can be represented using the following series in powers of the parameter of the group 'c: 

B=A+T[A,U]+++[[A,U],U]+... 

If we subject the operator B to the commutation condition when T = s with G (we recall 

that G =Ae4 = a/ap and the commutation condition reduces to B being independent of p), we 
will obtain an equation for the operator (I. We shall solve this equation asymptotically, for 
which we shall introduce the notation 

Ak = A + o (et), Bk = B + o (ek), U, = U + o (Ed) 

where Ak,Bk, U, are operators which differ from the exact operators by quantities of a higher 

order of smallness than ek. 
The following chain of relations follows from Eq.(7) for the above operators: 

Bo = do, B1=A1+e[Ao,Uol,... 

B, = A., + r; ek r. . . [An-k, Un-k]r . . .], Un-kl 

Consider the first commutator (k = 1) in B,: 

[A,_,, U,_,] = [An-l - Ao, Un-I] + [Ao, Un-I] 

Since A,,_1 - A0 - E, then, without going outside the limits of the asymptotic form 

considered, instead of (q) we can write 

[An-n U,-,]= [An-l--- Ao,U,,] + [Ao,U~-J+&=E[-JO, un-xl f-L 

(8) 

@) 



where L,, is an operator that depends only on 
are the lowest in relation to Un_r: 

L,=A,+e[&r- Ao,U,,l+ 
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the asymptotic forms of the operator U which 

n k z + GA?+k, Un-kl, . . .I, un-k] (10) 
k=z k 

Bearing in mind that [A,, Ukl = c?U,/r?p, we can rewrite Eq.(8) in the form 

Bo=Ao, Bi=e$+ Al, Bs=++A,+ 

e[Ar--40, UO] + +es [[Ao, UO], UO], . . ., 

au*-1 B,,=s- Q +Lh: 

Eqs.(ll) enable us to determine all the approximations for operator B and the operator 
of substitution (I in succession. 

Indeed, to construct the first approximation it is sufficient to take B1 thus: 
h 

B~=knf~ AI&= 
0 

Then U, is obtained by the quadrature: 

The mean value with respect to p of the operator Ai (provided that it exists) and the 
addition to the mean are denoted by (Al) and A respectively. 

The choice of Brin the form of the mean from A1 is dictated, on one hand,bytherequirement 
that B must be independent ofp, and on the other by the requirement that the equations of 
substitution are bounded with respect to p. 

After the operator U, is obtained, we can proceed to construct the second approximation 

Ba = <-& + e [Al - Ao, UO] + $ e’ [[ Ao, Uo], Uo]> 

which in turn enables us to obtain 

u,=-+s (KS + e [Al - Ao, UOI + t 8’ [[Ao, UO], Uo]) dp 

Thus the general expression for an n-th approximation is obtained in the form 

where the operator L,, is expressed in terms of the preceding approximations of the explicit 
finite formula (10). If the normal form converges, then an exact expression for the operator 
of the transformed system is B=lim<L,> as n-+m. 

Since B,, by construction,doesnot depend on p and B, = A, = alap, then 

B,==~+e[P,(q,e)~+Qn(%e)~] 

Consequently, Eqs.(6) acquire the following form in the variables (p, q) 

dpldt = 1 + eP, (4, e), d&t = eQ,, (q, e) (13) 

which alsorepresentsthefinal aim of the n-th approximation of the method of averaging. 
It is necessary to substitute the solutions of system (13) into the equations of change 

x=e-eu*2p, y=e-eun-aq (14) 

in order to obtain a solution, in initial variables, of corresponding accuracy. A knowledge 
of the operator U,_, is necessary to construct the n + l-th approximation, i.e. B,+I. 

Thus, the whole procedure reduces to calculating B, and IT,,_, using Eqs.(lO) and (12). 
The expression for B, determines the right-hand sides of system (13), and U,,_, determines 
the change of initial variables (2,~) into (p, q) in which the specified system (6) takes a 
form that does not depend on p, i.e. (13). 

Since there is no averaging procedure in the above algorithm, the asymptotic estimates 
of the accuracy of this algorithm are equivalent to the usual accuracy estimates of the method 
of averaging /lo/. However, in specific examples the real accuracy of the algorithm can be 
higher than that given by the method of averaging. This occurs because transformations which 
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are similar to (14) occur in the method of averaging, at the same time as the operators are 
constructed in the proposed algorithm. Therefore, if the exact expression of the operator 
can be obtained in a finite number of steps, Eqs.(ld) also determine the expression for 
transformations which are, however, represented by infinite series. It is impossible to 
obtain them using a finite number of steps. 

We shall illustrate the above with an example. 

Example 1. Suppose it is required to use the change of variables (z,y)-+(p.q) to reduce 
the following system to a form in which the dependence of the right-hand sides is eliminated: 

l&i& = 1. dytdt = --eya cos= z 

(it can be accurately integrated using the method of separation of variables). The trans- 
formation that reduces it to autonomous form can be written in the explicit form 

However, it is impossible to obtain these formulas for a finite number of approximations 
using the Krylov-Bogolyubov method. Incidentally this accurate result is obtained in two 
approximations by means of the algorithm proposed above. The operator of this system, 
written using new variables, has the form 

A = alap - e4J COS= pataq 
The application of the above procedure gives 

The second approximation 

We shall calculate the commutators 

Consequently 

Thus, the second approximation agrees with the first. It is obvious from Eq.(lO) that 
the same will also be obtained for any approximation. The problem is thereby solved exactly. 

The transformed equations have the form 

dpfdt = i, dq/dt = - +- FP 

The connection between the new variables and the old ones is obtained using (14) and 
agrees with the above exact solution. 

Exam@? 2 /ll/. Consider the equation cp"+cp-ama= ~oaat. In this equation there is a 
principal resonance, and the periodic solution decomposes into a series in fractional powers 
of the small parameter. It was stated in this connection /II/ that these solutions cannot 
be obtained using the theory of quasilinear system. We shall show that this is not so. The 
occurrence of fractional powers is only connected with the choice of the scale of measurement 
of the variables and is in no way determined by the asymptotic procedure for constructing a 
solution. 

In order to use the quasilinear approach, we shall introduce a small scale in the written 
equation using the formula tp=er(e is the small parameter) and rewrite it in the form of a 
quasilinear equation 

I"+I=aa%~++iie-'cost 

For the non-linear and inhomogeneous terms to have the same order of influence on the 
oscillator, we must assume @= ea. 

We shall proceed in this equation to the Van der Pol vasiables (canonical coordinates 
in the phase space (t,r,z') of the group of screws generated by the phase flow of a degenerate 
system) 

t = z, naylsinz+y,cos2, 2’=y,cosz-yssins 

The initial equation under the additional equation yI'sinr + y,'cosr = 0 is rewritten in 
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the form of a system of standard form: 

z' = i, y; = EGOS 2, g; = --sin 2 

6 = ea (F1 sin z + y,cos z)~ + a2 COs z 

The operator of this system in the new variables: 

.‘I=‘+&- + Iea (q1 ain P + qa cos P)’ + 

s2 cos p} 
( 

cos p d - sin p a 
aq1 aq, ) 

a 
A,=dp' A,=$-+En(q,sinp+~2cosp)a cosp&-sinps 

( 

The first approximation 
a 

&=<Al>=Ao=ap, uo=-$ .&lip= 
s 

I 

i 2 
0 7 (4r1- ql*) singp +T qlql cost p - qnl sin p 

1 -&+ 
1 2 

a ( T (a' - 4s') toss P + T q1q1 sins p - q1’ cos P I 
a 

K 

The second approximation. Since Al-AA,= --e [A,,CTs], we obtain 

&=W++-<[4*-A0,Uol>= 

-&++- { ES 1 ++ 4% (ql'+ qa') I &- ++A (q1*+4*') & 

The system Of the second approximation with separate variables is obtained in the form 

& 
-_=l 

de 
dt ’ 1 x = 

The connection between the initial variables and the new ones is 

(15) 

2 = P. Yl = h - s~clq1, Ys = 4s - s(l,q* (16) 

Solving system (15) and substituting the result into (16), we obtain a solution of the 
problem in initial variables. If, as in /ll/), only the periodic solution is of interest, 
then, determining the stationary point ql=O,q,= -(6/(58))'11 from (15), we obtain an expression 
that agrees with that in /ll/ for the variable v. 

The author thanks D.A. Bryuno for discussions and comments. 
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